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ORIGINAL ARTICLE

Hybrid simulation modelling for dementia care services planning

D. C. Evendena,b , S. C. Brailsforda, C. M. Kippsc, P. J. Roderickd, B. Walshb and for the Alzheimer’s
Disease Neuroimaging Initiative�
aSouthampton Business School, University of Southampton, Southampton, UK; bSchool of Health Sciences, University of
Southampton, Southampton, UK; cUniversity Hospital Southampton, Southampton, UK; dSchool of Medicine, University of
Southampton, Southampton, UK

ABSTRACT
Dementia is an increasing problem in today’s ageing society, and meeting future demand
for care is a major concern for policy-makers and planners. This paper presents a novel
hybrid simulation model that simultaneously takes population-level and patient-level per-
spectives to calculate the numbers of patients at different stages of disease severity over
time, and their associated care costs. System Dynamics is used at population level to capture
ageing, dementia onset, and all-cause mortality, whereas disease progression is modelled at
individual patient level using Agent-Based methods. This enables the model to account for
variability between patients in the rate of cognitive decline, dementia-related mortality and
response to treatment interventions. Using epidemiological data from the medical literature,
disease progression is modelled via a longitudinal clustering method to identify progression
type, followed by mixed-effects regression to reflect each individual’s rate of cognitive
decline. Results are presented for population data from the south of England, and show that
the currently available interventions have only modest effects at population level.
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1. Background

Dementia is a long-term neurodegenerative condi-
tion associated with progressive cognitive and func-
tional decline, often requiring ongoing and
eventually high levels of care. It is mainly, but not
exclusively, associated with old age, and while medi-
cation can temporarily delay symptom progression
in some patients, there is currently no cure. The
onset is insidious, occurring many decades before
clinical symptoms appear, making protective med-
ical interventions difficult to target. Provision of
care services is therefore critically important, par-
ticularly as 36.5% of the estimated 850,000 people
with dementia in the UK are reported to be living
in care homes (Alzheimer’s Society, 2014).

This modelling study was undertaken in collabor-
ation with the Wessex Academic Health Science
Network (wessexahsn.org.uk). Data availability was
an important factor in the model design process; the
model uses published data from clinical studies as
well as local population data. The model estimates
the number of people over 65 with dementia over
time (broken down by disease severity stage) and
the associated quality-adjusted life-years (QALYs),
the costs of care, and the number of deaths. The

model can also be used to explore the effects of any
potential treatments or interventions. Section 9 of
this paper presents comparative results for two cur-
rently available interventions, medical treatment and
a healthy lifestyle intervention.

2. Previous modelling work in dementia

As part of the Assessment of Health Economics in
Alzheimer’s Disease (AHEAD) project, Guo et al.
(2014) developed a discrete-event simulation model
of the treatment and control arms, representing a
drugs “trial” to determine intervention benefits. The
dementia cohort was modelled using a fixed and
random effects regression model (Getsios et al.,
2010). The model depicted incremental cognitive
decline, using one single set of coefficients to repre-
sent the entire dementia cohort.

System Dynamics was applied to family size
trends and family living arrangements in Singapore
(Ansah et al., 2013; Thompson et al., 2012, 2014)
These studies considered projections for the poten-
tial demand for long-term care, and the impact on
acute care services if the provision of long-term care
is inadequate. Given the cultural differences in
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family life and the important role of foreign domes-
tic workers in Singapore, this work is difficult to
generalise to the UK. Moreover, model parameters
were based on limited, historical data (Reisberg
et al., 1996).

A more recent study, IMPACT-BAM (Ahmadi-
Abhari et al., 2017; Guzman-Castillo et al., 2017)
uses Markov states to model ageing and progression
of healthy 35 year olds to age 100 into several
impaired health states and death. The model
focusses on cardiovascular disease and cognitive
impairment as drivers of life expectancy and disabil-
ity. The results on dementia support other studies
(Matthews et al., 2013; Wu et al., 2017) that show
that the dominant factor driving the overall number
of prevalent cases in future will be the age-
ing population.

The PACSim model (Kingston et al., 2018, 2018)
uses microsimulation to predict a decrease in care
need for those aged 65–74 and an increase in the
number of people with high care dependencies in
the over 85 s. The authors found that the prevalence
of those with four or more multiple morbidities is
projected to increase, with most of the anticipated
life expectancy gains accompanied by disease. Their
model was parameterised from three different popu-
lation surveys, but dementia was not modelled expli-
citly and was determined as a post-simulation
analysis of related factors.

Other than these studies, to date OR techniques
have not been widely applied to care service plan-
ning for people with dementia. This is particularly
the case with hybrid approaches. The model pre-
sented here adds to this previous work by classifying
dementia severity by progression type and by using
multiple outcome measures to compare scenarios.
Most importantly, the use of hybrid simulation

allows two entirely different but closely intercon-
nected processes, population dynamics and individ-
ual disease progression dynamics, to be modelled
using methods appropriate to their specific charac-
teristics, making it possible to explore the interac-
tions between population-level effects and
individual-level effects.

3. Computer simulation modelling approach

The model was developed in the software AnyLogic
(XJ Technologies, 2015). At the population level,
ageing, dementia onset, and mortality are modelled
using System Dynamics (SD). At the individual
patient level, disease severity progression and
the effects of any interventions are modelled
using Agent-Based Modelling (ABM) to capture
variability between individuals (Macal & North,
2010). Figure 1 shows the conceptual model design,
combining SD stocks and flows (upper part) and
agent-based severity progression and death (lower
part). The interactions between the SD and AB
parts, i.e. dementia onset (creating agents) and death
(removing agents), are indicated in the side panels.
Interfacing continuous SD and discrete ABM or
DES modelling methods is a recognised challenge in
hybrid simulation (Brailsford et al., 2019). In this
model, agents are created and removed by monitor-
ing and discretising the onset and mortality flows
for each age group on a weekly basis, as described
in Section 6.

The term “dementia death” in Figure 1 is short-
hand for “death of a person with dementia,” since
dementia increases the risk of dying from other con-
ditions. Severity progression is classified as slow,
intermediate, or fast (Doody et al., 2010), repre-
sented by three different mixed effects regression

Figure 1. Conceptualisation of ageing, dementia onset, and severity progression.
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models, as described in Section 5. When an agent is
created, the progression type and the corresponding
regression parameters are randomly sampled. The
use of agents to capture heterogeneity in progression
and the complexities of response to interventions
overcomes the assumption of homogeneity within
each stock, as in standard SD modelling (Forrester,
1994; Sterman, 2000). Care costs, quality of life, and
years with dementia are calculated for each individ-
ual agent and then aggregated at the population
level and by progression type.

4. System dynamics model architecture

The population is broken down into 5-year age
groups from 65 to 105. The model excludes early-
onset dementia, so people in the “entry” stock [60
to 65] are assumed to be cognitively normal (CN).
As shown in Figure 1, each CN stock has two, age-
related, outflows: CN deaths and incident (new)
cases of dementia. Age-related mortality is also
applied to each stock of people with dementia
(PWD). The PWD cases and PWD deaths stock lev-
els are monitored at weekly intervals to control
agent creation and removal in the ABM component.
Age-related mortality and incidence rates were esti-
mated from published data (see Appendix A.1).

Conventional SD ageing chains contain flows
between adjacent age-group stocks, as indicated in
Figure 1; at each time step dt, material drains from
one stock and flows into the next. The model pre-
sented here uses a new approach, and instantan-
eously transfers the entire remaining contents of
each stock (i.e. survivors) at 5-year intervals. This is
depicted in Figure 2; note the absence of horizontal
flows between stocks. Ageing for both CN and
PWD sub-populations is controlled by purpose-writ-
ten code executed at 5-year intervals. First, the
remaining contents of the penultimate stock [95 to

100] are moved to stock [100 to 105]. Next, the
contents of stock [90 to 95] are moved to stock [95
to 100], and so on down the age groups until each
stock has been aged and the population is subject to
new mortality and incidence rates for the next five
years of modelled time.

This approach assumes that the average age in
each age group stock remains unchanged over the
5-year period, and hence the age-related mortality
and incidence rates also remain unchanged. This
relatively minor assumption significantly simplifies
the standard approaches in the literature (Eberlein
& Thompson, 2012, 2013; Sterman, 2000) and
avoids the considerable complications of stock mix-
ing that would otherwise arise due to differences
between inflows and outflows. This was fairly
straightforward to implement in the simulation
model, but the corresponding analytical formulation
would be very difficult to solve: see Appendices A3
and A4.

5. Agent-based model architecture

Each agent has its own instantiation of a generic
statechart that describes all the possible states it can
be in and the transitions between them. Agents flow
through the statechart under the control of transi-
tion routings and conditional logic, depicted con-
ceptually in Figure 3.

5.1. Agent creation and attribute allocation

When an agent is created, it is allocated several
attributes which determine its behaviour. Each agent
is allocated a unique ID number, progression type
(slow, intermediate, and fast), individual progression
rate parameters, potential response to medication
(positive or not), and a lifestyle response (more
healthy or not). The values of these attributes are
sampled from the probability distributions described
in Appendix A.6. Dementia severity is represented
by the score in the mini mental state exam
(MMSE), a commonly used clinical instrument to
assess a person’s cognitive state (Folstein et al.,
1975; Sheehan, 2012). MMSE test scores are ubiqui-
tous in the dementia literature, and enable dementia
severity to be associated with QALYs and care costs.
Cognitive decline is calculated at monthly intervals,
using a mixed effects regression equation to calcu-
late an updated value of the MMSE. The underlying
fixed effect parameters are the same for all agents of
that progression type, but the random effects adjust-
ments of intercept and slope are sampled for each
individual agent. Other attributes are used to track
and record simulation outputs, such as age of onset
and accumulated care costs. Based on the agent’s

Figure 2. Adjacent age groups [x, xþ 5] and [xþ 5, xþ 10]
with no flows between age bands.

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 3



monthly MMSE value, additional functions are
called to calculate care costs based on published
sources (Alzheimer’s Society, 2014) and QALYs,
based on summing health utility scores. The equa-
tions relating cognitive decline to QALYs and costs
are given in Appendix A.7.

5.2. Modelling interventions and benefits

The two interventions compared in this paper are
medication and a healthy lifestyle, both of which are
only effective for some patients. Medication can tem-
porarily slow down disease progression, and a healthy
lifestyle can delay the onset of dementia (and also
death). These effects and the proportions of patients
that benefit are shown in Table 1. The source referen-
ces are given in Appendix A.1.

The effect of medication is modelled using condi-
tional triggers that transition the agent to states where
progression is temporarily decoupled from the simu-
lation timer. After 12months, the agent moves out of
this state and their severity progression is re-
synchronised with simulation time. Other time-
dependent calculations (age, elapsed time with
dementia, etc.) are not affected. To model the benefits
of a healthier lifestyle, agents move to a delayed onset
state, remain there for 24months, and subsequently
move into the severity progression states. These
agents then later move to a delayed mortality state in
which their “scheduled” death is delayed by
12months. These actions occur only if the patient has
a positive response attribute to that intervention.

6. Interaction between SD and ABM

This interaction occurs twice, at dementia onset and
at death, and is one of the most innovative features
of the model. Both processes originate in the SD
part but require changes to be made in the AB part.
In each age band, dementia onset is represented by
the flow from CN to PWD, but the PWD stocks

alone cannot be used to count new cases as they
have outflows to PWD deaths. Therefore, in order
to determine when a new agent should be created,
each age group ½x, x þ 5� has an artificial “onset
stock” with (continuous-valued) stock level Nx, xþ5

and integer-valued tracking threshold Px, xþ5: The
inflow to each onset stock duplicates the flow from
CN to PWD for that age group using shadow flows.
The values of Nx, xþ5 are monitored at one week
intervals in the SD part, and if Nx, xþ5>Px, xþ5, then
Nx, xþ5�Px, xþ5b c new agents in that age band are
created and Px, xþ5 incremented to the next integer
greater than Nx, xþ5: These onset stocks are simply a
modelling device to count the number of new cases;
they have no outflows, and hence are not shown in
Figures 1 and 2.

For agent removal, i.e. death, the process is
slightly simpler as the PWD death stocks have no
outflows and hence there is no need for a logical
equivalent of the onset stocks. The PWD death
stock levels are monitored at one week intervals,
and each time the (rounded down) stock level
increases, the corresponding integer number of
agents whose ages fall within that age band are
removed. Since increased dementia severity is asso-
ciated with increased risk of mortality (Larson et al.,
2004; St. John et al., 2002; Su et al., 2014), agent
removal is biased preferentially to the more severe
cases. This is implemented in the model by sam-
pling an MMSE value from a uniform distribution,
and selecting (at random) an agent whose MMSE
value exceeds this sampled value. If the chosen
agent is in the delayed mortality state, another agent
is selected.

Figure 3. Agent-based severity progression concept.

Table 1. Intervention parameter values.
Intervention Parameter Value

Medication Start time Onset þ 12 months
Progression delay 12 months
% benefitting 30%

Lifestyle Onset delay 24 months
Mortality delay 12 months
% benefitting 30%

4 D. C. EVENDEN ET AL.



7. Model outputs

The main model outputs are the numbers of
patients at different stages of disease severity over
time, and the numbers of cognitively normal and
dementia deaths by age group, also broken down by
severity level. These numbers can be used to inform
care service planning as well as the design of end-
of-life services (Georghiou et al., 2012) (Table 2).

User-selectable options allow all-female or all-
male populations to be simulated, as sex-specific
incidence and mortality rates give different distribu-
tions of dementia onset age and longevity. The
results presented in this paper are for a mixed
population (see Appendix A.1).

8. Model validation

The simulation was validated by comparing the
model results with independent sources where avail-
able. For example, Figure 4 compares mortality in a
cohort of 5,000 persons starting at age 60, obtained
by aggregating CN (green) and PWD (blue) deaths
in the model (solid orange) and using reference data
from the UK Office of National Statistics (dot-
ted orange).

On average, modelled patients survived
7.761 years with dementia (see Table 5). This value
is consistent with published studies, although these
studies are relatively old and the ranges are very
wide, for example 3.8 to 10.7 years (Xie et al., 2008)
and 5.9 to 12.2 years (Waring et al., 2005). The
model results for age-related prevalence were com-
pared with published estimates (Alzheimer’s Society,
2014), and the overall number of cases compared
with the published lifetime risk of dementia
(Brookmeyer & Abdalla, 2018; Fishman, 2017), as
shown in Table 3. Given the uncertainty in the pub-
lished estimates, the simulation results are reason-
ably consistent.

Simulated care cost outcomes were compared
with other published care cost data for England
(W€ubker et al., 2015), not used in the model, which
reported that the average annual cost per person
was £27,000, rising to £44,600 per annum for people
in nursing homes. The model gives an average
annual cost of £28,800 per person. Costs are not
broken down by progression type in the literature
so further comparison is not possible, but assuming
that fast progressors are more likely to require

nursing home care, these costs also compare well:
the simulation gave £45,100 per person per year.

9. Experimentation and results

Table 4 presents the results for a no-intervention
scenario, using the mortality rate and incidence
parameters given in Table A3 in the Appendix, for a
cohort of 10,000 persons entering the model in 2015
at age 60. To account for uncertainty, three parame-
ters (two mortality; one incidence) were varied over
a± 20% range, with 10 intervals (so 11 measurement
points), giving 113 ¼ 1331 iterations and an overall
total of 2,791,382 agents. This experiment took
about 40min on an i5-6600 CPU running at
3.3GHz with 8GB RAM under Windows 10.

Table 4 shows that unsurprisingly, in the younger
age groups there are more new cases than deaths
from dementia, whereas the reverse is true in the
older age groups. This is indicated by the inequal-
ity symbols.

Table 5 summarises the baseline results, showing
distinct differences by progression type in YWD and
care costs.

Table 6 presents the results from two further
experiments for the same cohort and the two inter-
ventions described in Section 5.2.

10. Discussion

10.1. Simulation results

It can be seen from Table 6 that both interventions
show a benefit in terms of increased QALYs and
reduced costs. However, medication increases YWD
by reducing progression rates and mortality,
whereas lifestyle interventions reduce YWD and
thus result in greater cost savings as well as a
greater QALY gain compared with medication.
Although medical interventions can be worthwhile
at an individual level, only a minority of patients
benefit and the average cost saving per patient
(£3.1k) is small. On the other hand, the lifestyle
intervention results in an average cost saving per
patient of £15.2k, and is likely to benefit the CN
population as well.

Table 6 shows that slow progressors survive
about 9 years, whereas fast progressors only survive
3.4 years on average. This more rapid decline is
associated with reduced quality of life and higher

Table 2. Summary outcome measures.
Outcome Comments

Years with dementia (YWD) Calculated for all patients and also broken down by progression type
Quality adjusted life years (QALYs)
Care costs Calculated for each patient; costs per annum were estimated by dividing this by YWD
Number of PWD, by age group and severity Case load indicator for care service planners
Number of deaths of PWD by age group Case load indicator for end of life care

JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 5



mortality. The annual care costs for fast progressors
are higher, but they are incurred over a shorter
period, resulting in lower average total care costs
(£155k). Slow progressors incur higher average total
costs (£233k), but over a longer period.

10.2. Clinical and policy implications

Prompt assessment for fast progressors is clearly
important, as there is less time to get individual
care plans in place and to identify the budgetary
means. For a typically-sized care service planning
area, with 10,000 persons aged 60–65, there will be
several hundred new dementia cases within that
cohort over each 5-year interval. The number of
new cases within that age cohort peaks at age 80 to
85, after which the number of people dying with
dementia exceeds the number of new cases. At this
point, the emphasis for care services shifts from
managing new cases to providing end of life care.

The scenarios in Section 9 were chosen to illus-
trate the simplest way that the model can be used,
i.e. for one single age cohort starting at age 60, and
are thus closer to the world of clinical trials than
the world of care service planning. However, the
model can also handle more realistic population-

based scenarios, described in Appendix A.2. These
include multiple age cohorts, i.e. new arrivals aged
60–65 every five years; a “cross-sectional” initial
population in each age group at time zero; and,
most realistic of all, a combination of both these.

Until more effective treatments become available,
medication alone is unlikely to make significant
reductions in population-level demand for dementia
care services. Lifestyle interventions have greater
potential, and may also lead to other health benefits
in addition to dementia, but require considerable
planning and long-term commitment from all stake-
holders to ensure that these benefits are realised. An
appropriate precautionary approach would be to
prepare for increased demand based on the key
driver of older population growth, supporting previ-
ous recommendations (Prince et al., 2016). In add-
ition, a deeper appreciation of differing progression
rates, and their effect on service need affords better
capability in matching service provision with local
demand and future service growth.

10.3. Modelling and simulation reflections

The scientifically novel aspects of this model are the
application of several modelling concepts –

Figure 4. Validation of modelled overall mortality.

Table 3. Dementia prevalence and lifetime risk (LTR) of dementia.
Age 65 70 75 80 85 90 95 LTR

Reference 1.7% 3.0% 6.0% 11.2% 18.3% 29.9% 41.1% 31.0%
Simulation 0.5% 3.2% 7.4% 14.4% 22.9% 32.3% 42.3% 26.9%

Table 4. Numbers of new cases and PWD deaths for a single age cohort.
Age group CN deaths 95% CI New cases 95% CI PWD deaths 95% CI

60–65 380.5 ±2.0 – – – – –
65–70 557.7 ±2.7 230.4 ±2.2 > 13.6 ±0.1
70–75 836.7 ±3.9 328.8 ±3.0 > 71.9 ±0.7
75–80 1159.9 ±4.9 540.4 ±4.7 > 223.6 ±2.0
80–85 1496.8 ±5.9 601.2 ±4.8 > 529.6 ±4.6
85–90 1510.0 ±6.3 525.6 ±4.0 < 810.4 ±6.5
90–95 986.0 ±6.7 322.7 ±2.8 < 696.8 ±5.3
95–100 337.7 ±4.3 120.6 ±1.5 < 292.0 ±2.2
100–105 39.1 ±0.5 19.0 ±0.2 < 46.1 ±0.5
Total 7304.4 ±19.8 2688.7 ±19.8 2684.0 ±19.8

Notes: 95% CI values are calculated in AnyLogic as half-width values about the mean.
Stock level rounding errors are <0.5%.
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including hybrid-modelling concepts – to the
dementia use-case. These include the ageing mech-
anism in the SD submodel, the interfaces between
SD and AB (i.e. accumulation-only stocks used for
agent creation and statistical model-based agent
removal processes), and individual disease progres-
sion analysis in the AB submodel. The hybrid
approach exploits the complementary strengths of
SD and ABM. In a healthcare context, many prob-
lems can benefit from combining a deterministic,
population-level system-wide view with a detailed,
stochastic, patient-level perspective (Brailsford et al.,
2019). Public health campaigns in particular are typ-
ically “targeted” at very large populations, more effi-
ciently modelled using SD, but their impact is felt
by individual patients, with variable effect. The
healthy lifestyle intervention in this paper exempli-
fies this. Any such intervention would have to be
aimed at (say) all people over 50, the majority of
whom will never develop dementia (although they
might still benefit from taking more exercise and a
more healthy diet). For those individuals who do
develop dementia, the health benefits are variable.
Service planners and decision-makers need to take
all these aspects into account.

ABM is still relatively underused in practice
(Brailsford et al., 2019), but is a very powerful
approach for modelling human systems. It would
enable this model to be extended to include compli-
cations and comorbidities associated with dementia
(Bunn et al., 2014; Kurrle et al., 2012; Poblador-Plou
et al., 2014), and also handle more complex net-
work-based interactions, such as social engagement
(Badham et al., 2018) and health service provider
interactions and behaviours (Mills, 2013), assuming
sufficient data were available to parameterize such a
model. This model demonstrates the potential of
currently underutilised OR techniques (Monks,

2016; Penn et al., 2015) to better understand the
interactions between population and patient-level
effects of public health interventions. The general
principle of modelling macro-micro interactions
extends far beyond healthcare into many other
application areas.
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Table 6. Intervention effects, calculated for individual PWD, and averaged over all progression types.
Outcome measure Baseline Medication Lifestyle

Years with dementia (YWD) 95% confidence interval 7.671 ± 0.027 7.753 ± 0.027 7.376 ± 0.027
Quality adjusted life years (QALYs) 95% confidence interval 4.637 ± 0.016 4.707 ± 0.016 4.914 ± 0.015
Total care costs 95% confidence interval £220.8k ±£1012 £217.7k ±£986 £205.6k ±£976
Annual care costs £28.8k £28.1k £27.9k
Summary of benefits
YWD reduction (increase) over baseline (1 month) 3.5 months
QALY improvement over baseline 0.070 QALY 0.277 QALY
Overall care costs Saving £3.1k Saving £15.2k

Table 5. Summary baseline outcomes, aggregated and by progression type.

Outcome measure

Mean values and 95% CI

Slow Intermediate Fast Total

Years with dementia (YWD) 95% confidence interval 9.181 ± 0.03 6.049 ± 0.026 3.439 ± 0.023 7.671 ± 0.027
Quality adjusted life years (QALYs) 95% confidence interval 5.661 ± 0.018 3.527 ± 0.014 1.802 ± 0.011 4.637 ± 0.016
Total care costs 95% confidence interval £233.1k ±£994 £217.9k ±£1145 £155.2k ±£1196 £220.8k ±£1011
Annual care costs £25.4k £36.0k £45.1k £28.8k

Notes: 95% CI values are calculated in AnyLogic as half-width values about the mean.
Annual costs are calculated from the stated point estimates.
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Appendix A

This appendix provides a more detailed description of the
model, covering the following areas:

1. Parameter data sources and references
2. The population definition
3. The SD model as a system of differential equa-

tions (DEs)
4. The solution to those DEs
5. The derivation of dementia incidence and mortal-

ity rate
6. The dementia severity progression model
7. Care cost and QALY equations

A.1. Data sources

A.2. Population definition

The model allows various population starting scenarios,
from single and multiple successive age/birth cohorts, to a
cross-sectional age distribution with starting-value stock
levels in all age groups for both CN and PWD stocks.

This paper focusses on the results for a single cohort
approach, as this provided the most easily interpretable
results. Ageing, onset, and death could be directly
observed without more complicated interaction effects.
Observing a single age cohort also provided clearer
insights into the underlying epidemiology, and the inter-
vention benefits for a specific age group.
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For multiple age cohorts, the effect of population
growth can be explored by making subsequent 60–65 age
groups entering the model progressively larger. The
model does not attempt to reflect short-term fluctuations
in real-world population growth and longevity, but simply
depicts general trends. Younger cohorts entering the
model are increased by a cohort inflation parameter to
reflect projected population increases. Younger cohorts
also live longer, and this is controlled by a mortality rate
reduction parameter. The ONS-based (ONS, 2014c) refer-
ence values in Table A2 show the projected relative
growth in each age band over the next 20 years: for
example, in 2034 there will be 1.99 times as many 85-
year-olds as there were in 2014. Simulation case 1 shows
the results for annual increases of 2.2% in population
growth at age 60 and a 1.2% reduction in mortality rate.
Case 2 shows the results for 2.2% and 3.0% respectively.

For the cross-sectional age distribution, the cognitively
normal stocks were initialised with headcounts based on
published values (ONS, 2014b) of the number of people
in each 5-year age group. While this approach is more

realistic, older people spend a shorter time in the model
and the results are a composite of onset and mortality
effects across these different age groups. While the results
obtained were more comprehensive, detailed interpret-
ation is thus more difficult, and are not reported here.

A.3. Analytical formulation

In this section we present a continuous, analytical, formu-
lation of the ageing process in the SD model as a set of
ordinary differential equations (ODEs). The broad hori-
zontal arrows in Figure A1 represent how stock levels are
transferred at 5-year intervals between age groups. The
vertical arrows show the incidence and mortality flows
between stocks within an age group. For simplicity this
formulation omits the age band index, but (unlike many
studies in the literature) the model uses age-related inci-
dence and mortality rates.

The stock of people with dementia P tð Þ has initial
value P 0ð Þ, an inflow of new cases with incidence rate
rI, and an outflow to the stock M tð Þ (dementia
deaths) with dementia mortality rate rM: Pð0Þ are the
survivors with dementia transferred in from the previ-
ous age group. Similarly, the stock CN tð Þ of cogni-
tively normal (CN) people, has initial value CN 0ð Þ and
an outflow to the stock D tð Þ of CN deaths with CN
mortality rate rD:

At the end of each 5-year interval, the surviving
CNð5Þ and Pð5Þ stocks are transferred to the next oldest
age group, where they become CNð0Þ and Pð0Þ for that
age group. These transferred stocks therefore represent
the initial conditions for the differential equations
describing that process.

The rate of change of CNðtÞ over time t is determined
by the incidence rate rI and the CN mortality rate rD :

dCNðtÞ=dt ¼ � ðrI þ rDÞ:CN tð Þ
The rate of change of D tð Þ is determined by CN tð Þ

and the CN mortality rate rD :

Table A1. Input parameter data sources.
Parameter Source details

Population mortality National Life Tables (ONS, 2014a)
Population distribution Estimates for mid-2016 (ONS, 2014b)
Population projections 25 year forecast by Local Authority (ONS, 2014c)
Incidence rates (Brookmeyer & Abdalla, 2018; Corrada et al., 2010; CSHA Working

Group, 2000; Edland et al., 2002; Fichter et al., 1996; Fishman, 2017;
Grasset et al., 2016; Matthews et al., 2016; Miech et al., 2002; Ott
et al., 1998; Rait et al., 2010; Seshadri et al., 1997)

Dementia mortality (Ag€uero-Torres et al., 1999; Ganguli et al., 2005; ONS, 2019) Values
interpolated to 5-year age groups

Dementia prevalence Dementia UK: Update (Alzheimer’s Society, 2014)
Severity progression Alzheimer’s Disease Neuroimaging Initiative (ADNI, 2016)

Longitudinal clustering method (Genolini et al., 2015)
Mixed effects regression (Bates et al., 2015)

Medication benefit (Birks, 2006; Birks et al., 2013; 2015; Perera et al., 2014) plus expert
judgement for the proportion benefitting.

Lifestyle benefit (Elwood et al., 2013; Larson et al., 2006; Ray & Davidson, 2014; van
Baal et al., 2016)

Care costs (Alzheimer’s Society, 2014; Jones et al., 2017; Kahle-Wrobleski
et al., 2015)

Table A2. Population growth and longevity comparison.
Age 65 70 75 80 85 90 Over 65s Parameters

Reference 1.22 1.55 1.64 1.81 1.99 2.81 1.55 (ONS, 2014c)
Case 1 1.54 1.59 1.61 1.64 1.72 1.99 1.71 2.2% and 1.2%
Case 2 1.60 1.66 1.71 1.79 1.98 2.78 1.99 2.2% and 3.0%

Figure A1. Age group stock-flow structure.
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dDðtÞ=dt ¼ rD:CN tð Þ
The rate of change of PðtÞ is determined by the incidence

rate rI from CNðtÞ and the dementia mortality rate rM :

dPðtÞ=dt ¼ rI:CNðtÞ � rM:PðtÞ
Finally, the rate of change in MðtÞ is determined by

PðtÞ and the dementia mortality rate rM :

dMðtÞ=dt ¼ rM:P tð Þ

A.4. Solutions of the differential equations

We present solutions for these ODEs in the case where
there are no survivors from the previous age group,
i.e. Pð0Þ ¼ 0:

Number of CN people:

CN tð Þ ¼ CN 0ð Þ:exp �t: rI þ rDð Þ½ �
CN deaths:

D tð Þ ¼ CN 0ð Þ:rD
rDþ rI

1� exp �t: rI þ rDð Þ½ �� �

Number of PWD:

P tð Þ ¼ CN 0ð Þ:rI
rDþ rI � rM

exp �t:rM½ � � exp �t: rI þ rDð Þ½ �� �
(A1)

Dementia deaths:

MðtÞ ¼ CNð0Þ:rI
rDþ rI

:

�
1þ rM

rDþ rI � rM
:exp½�t:ðrI þ rDÞ�

� rDþ rI
rDþ rI � rM

exp½�t:rM�
�

In general, survivors with dementia from the previous
age group would be included as an initial condition. In
this case, Equation (A1) becomes:

P tð Þ ¼ CN 0ð Þ:rI
rDþ rI � rM

: exp �t:rM½ � � exp �t: rI þ rDð Þ½ �� �

þ P 0ð Þ:exp �t:rM½ �

These ODEs are not easy to solve analytically, but are
relatively straightforward to implement and solve
by simulation.

A.5. Incidence andmortality parameter derivation

To parameterise the model, published studies were
reviewed to obtain the most relevant evidence. Incidence
rates – which define onset of dementia in a population
were based on a review of several studies (Table A1). The
availability of published data in most sources by 5-year
age group informed the model’s age group architecture.

Similarly, dementia mortality rates were based on a
review of sources (Ag€uero-Torres et al., 1999; Ganguli
et al., 2005; ONS, 2019). Estimated dementia mortality
rates were between one-and-a-half times and twice the
rates for the cognitively normal population, consistent
with previous studies (e.g. Ravi, 2011). Cognitively normal
age-related death rates in the model (rD) were derived
from overall population mortality rate (ONS, 2014a), cor-
rected to account for estimated prevalence (Alzheimer’s
Society, 2014), where rO is the overall population mortal-
ity rate and prev is the prevalence.

rD ¼ rO
1� prev

– rM:
prev

1� prev

� �

Table A3 presents the population parameters used for
a mixed population. The model may also be run with val-
ues specific to female and male populations.

A.6. Agent based model – dementia progression
parameter values

A key set of parameters were the severity progression
rates for the three progression types. Cognitive and func-
tional assessments results for 1736 patients (ADNI, 2016),
obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database, were partitioned using a lon-
gitudinal clustering method to identify progression type
membership (Genolini et al., 2015, 2013), and then
mixed-effects regression was used to estimate fixed and
random effects progression coefficients. These were used
to parameterise individual agent-based cognitive decline.

The mathematical formulation of the mixed-effects
regression model is

MMSEijðmonthÞ ¼ ½l0, i þ Nð0, r20, i, jÞ�
þ ½l1, i þ Nð0,r21, i, jÞ�:month

þ l2, i:month2

Where Nð0,r20, i, jÞ and Nð0,r21, i, jÞ� are normally dis-
tributed adjustments to take account of individual vari-
ability for the jth agent in the ith progression-type group,
to the fixed effect intercept and slope terms l0i and l1i,
and j 2 fslow, intermediate, fastg: A random effects term
was also explored for the quadratic term, but as model fit
was not significantly improved this was not included.
These values are summarised in the following table.

These values are given in Table A4 showing cognitive
decline as MMSE points per month, implemented with nor-
mally distributed random effects shown as Nðl1, r2Þ: Non-
linear slope coefficient values are mean changes per month
squared. For example, an agent simulating intermediate pro-
gression of dementia symptoms would start with a mean
MMSE score of 25.2, declining on average by 10.1 MMSE
points after 5 years, but with random effects of r0 ¼ 1:57
and r1 ¼ 0:074 to that agent’s intercept and linear slope.

Published studies (Table A5), which report fixed effect
linear slope values, show reasonable agreement with our
results. For example, 0.38 MMSE points per month (for

Table A4. Severity progression type parameter values.
Type Baseline Intercept Linear slope Quadratic slope

Slow 60% Nð26:9, 1:392Þ Nð0:03, 0:0442Þ l2 ¼ 0:00052
Intermediate 30% Nð25:2, 1:572Þ Nð0:14, 0:0742Þ l2 ¼ 0:00047
Fast 10% Nð22:5, 1:502Þ Nð0:38, 0:2012Þ l2 ¼ 0:00165

Table A3. SD flow parameter values.
CN mortality rate Incidence rate PWD mortality rate

Age group Cases per 1000 person-years

60–65 8 – –
65–70 12 5 18
70–75 20 8 30
75–80 34 16 51
80–85 62 25 93
85–90 112 39 168
90–95 191 63 287
95–100 308 110 462
100–105 308 150 462
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fast progression types in Table A4) is 4.56 MMSE points
per year, comparable with the fast column in Table A5.

A.7. Agent based model – care costs and QALYs

Monthly costs were calculated using the following equa-
tion based on a fit to the care cost references stated in
Table A1. For example, a moderate severity MMSE level
¼ 17 equates to a £3,389 monthly care cost or £40,668
per year. This compares with £2,983 per month (W€ubker
et al., 2015) and £39,294 per year for moderate dementia
(Alzheimer’s Society, 2014).

Costs £ð Þ ¼ 6568:4� 187:85MMSE

To calculate QALYs, firstly health utility scores were
calculated using the following equation based on the
AHEAD modelling equations (Getsios et al., 2010,
Equation 6) with the same simplification used by Barnett
et al. (2014, p. 3), so that:

Utility ¼ 0:408þ 0:01MMSE

Health utility was calculated monthly, so that the
QALY result is the summation of health utility values
over the years with dementia (YWD):

QALY ¼
X
YWD

Utility=12

Table A5. Summary of published progression rates.
Source Slow Intermediate Fast

Soto 2005� Soto 2008� �4 pts at 1=2 year �5 pts at 1 year
Carcaillon 2007� �3 pts/year
(Doody et al., 2010) <2 pts/year 2–5 pts/year �5 pts/year
Musicco� 5 pts at 2 years
(Barocco et al., 2017) �5 pts at 1.5 years �5 pts at 1 year
(Grootoonk et al., 2016) �3 pts at 2 years 3–6 pts at 2 years �6 pts at 2 years

Table summarises points on the MMSE scale.�indicates a secondary reference cited in Sona et al. (2013).
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